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ABSTRACT

The distortion of an electrical pulse caused
by dispersion as it propagates along a microstrip
line is investigated. A model for dispersion of
the phase constant is selected to meet the fre-
quency, accuracy, and microstrip parametric re-
quirements. Numerical integration and Taylor
series expansion techniques are used to compute
the shape of the DC dispersed pulses having square
and Gaussian envelope shapes. Taylor series
expansion methods are more convenient for the
analysis of RF pulses.

I. INTRODUCTION

The design of MIC’S requires a knowledge of
switching and transient signal behavior in micro-
strip transmission lines and semiconductor struc-
tures. The distortion of DC and RF pulses in
waveguides and dispersive material has received in
the past considerable attention [1]-[3]. However:
distortion of pulses, both DC and RF, in microstrlp
lines has not yet been examined thoroughly [4].

As an electrical pulse travels along a micro-
strip line it becomes distorted due to the disper-
sion and attenuation characteristics of the line.
While the electric and magnetic fields are con-
fined to one material in waveguides, coaxial lines
and strip lines, the microstrip is open so that
the fields are partially in the air and partially
in the dielectric. The air-dielectric interface
prevents propagation of a pure TEM mode. There-
fore, the phase constant is not a linear function
of frequency, and it results in dispersion.

Below a certain frequency (ft) the propaga-

tion is approximately TEM, and dispersion does not
occur. Pulses which have a spectral content above
ft will be dispersed since the higher harmonics of

the pulse will travel at a slower velocity than
the lower harmonics. This paper combines existing
microstrip dispersion formulas and analytical
techniques to determine the shape of the DC and RF
dispersed pulses having square and Gaussian enve-
lope shapes.

II. DISTORTION OF SIGNALS

The voltage or electric field at z=O (a ref-
erence point on the microstrip line) of a tran–
sient waveform is represented by

{
V(tj

V(t,z=o) = o
-T’/2 ~“t ~ T/2

elsewhere
(1)

In the frequency domain, the signal can be written
as

V(c.l,z=o) =J::;2 v(t,z=O)e -jotdt (2)
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where v(t) and V(o) form a transform pair. For
certain transient signals, such as a square pulse,
the limits -T/2 -$ t s T/2 define the pulse width

and the signal is confined to a short time period.
For a Gaussian pulse, the time range of ~<t<~ is
needed to completely characterize the response.

At a distance L, the signal (or puise) in the
frequency domain becomes

V(C.I, Z=L) = V(o, z=O)e-7(o)L (3)
The frequency dependent propagation constant is

y(u) = a(o) + jp(o) (3a)
where a(u) and p(o) are, respectively, the attenu-
ation and phase constants. For this investiga-
tion, the frequency dependent attenuation constant
:$:si;oassumed to be negligible so that (3) re-

V(O,Z=L) = V(u,z=O)e-j~(o)L (4)
Taking the inverse transform of (4) leads to the
time domain representation of the pulse at z=L,
and it can be written as

v(t,L) . &jw v(u,2=o)ej[~t-~(o)Ll* (5)
.

For lossless lines the phase constant p(w) can be
written as

B(Q) =* .!&E (
‘eff o

J (8)

The expression for V(W,Z=O), the transform of
V(t,o), is easily obtained for many common wave
shapes such as square, Gaussian, triangular Pulses
and any RF pulse modulated by these waveforms.
The transforms of more complex waveforms are con-
structed using these basic waveforms.

III. FREQUENCY DEPENDENT PHASE CONSTANT

Numerous methods have been used to determine
Ereff(o) for microstrip lines. Many papers use

full wave solutions such as the spectral domain
[5] or transverse current distribution methods
[6] However, these methods depend on time con-
suming computations and not on closed form equa-
tions which would be most desirable when confront-
ed with the evaluation of (5). Some papers have
curve fitted equations for Er ff(o) which are

e
simple to use. However, none of these equations
extend above 20 GHz, and they are not adequate for
many transient signals that have frequency
components up to 100–200 GHz.

Two methods that may be used to calculate
E

‘eff
(u) which provide physical insight and fairly

simple closed form expressions, although they may
not be as accurate as the full wave analysis, are

1) Coupled Modes (TEM, TE, and TM modes) [7].
2) Single Longitudinal Section Electric(LSE) [8].

Equations which use coupled modes are given
by Schneider (TEM/TE) [9], Carlin (TE/TM) [10].
Kobayashi (TEM/TM) [II], Pramanick and Bhartia
(TEM/TE) [12], and Yamashita (curve fitting using
the TE mode) [13]. Getsinger [8] uses the LSE
model to determine the frequency dependent dielec-
tric constant. From the standpoint of analytical
rigor, simplicity, and agreement with other exist-
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ing data it was found that the model for E
rlv=f(”)---

of Pramanick and Bhartia [12] was as accurate as
any of the others. For this model, Er ff(u) is

e
expressed as

Er– 6
%ff(o)

&
‘eff

(f) = Er -
1 + (f/ft)=

4@2Ereff(o)
J__=
f: z: Ev

(7)

(7a)

.
where EP = diel~ct~ic constant of the substrate

E
‘eff

(Oj = effective dielectric constant at zero
frequency

h = height of the substrate
Z. = characteristic impedance of the line

IV. EVALUATION OF INTEGRAL EQUATION

Two different methods to evaluate the inte-
gral equation of (5) are examined in this section.
The complexity of the frequency dependent phase
constant p(~) precludes solving for the integral
in closed form. Thus numerical integration tech-
niques, as well as a quadratic approximation
(Taylor series expansion method) are used to eval-
uate the integral of (5).

Numerical integration is the most straight
forward technique for evaluating (5), hut its ac-
curacy depends on the amount of computer time and
storage space available. DC pulses use less com-
puter resources than RF pulses, and this method is
best suited for them. The Taylor series expansion
method [1] is an approximation to the full inte-
gration of (5). Even though it is slightly less
accurate than numerical integration, it provides
data which compare well with those obtained from
numerical integration; however, it requires much
less computer time to evaluate the integral, espe-
cially for RF pulses.

In (5) the limits of integration are -=-%<-;
however, beyond a certain radian frequency, OL,

the contributions to the integral are negligible.
Narrower pulses have a higher frequency content
and will need a higher CJL; thus significant parts

of the integral are not excluded. If ‘r is the
width of the pulse, then

“L = R/T (8)

where g is a constant which depends on the wave–
shape. For example, a square pulse with a sharp
rise time (high frequency content), g is about
500. For a Gaussian pulseT:::h a slower rise time
a g of 20 is sufficient. (5) becomes

q, -
;Y&sf:: be wr~tten as a series approximation of

v(t,L) g~ .!TV(~i,z=o)ej[~it-~(oi)Ll&i (lo)
,=. .

where N = the number of divisions in the freauency
spectrum

A@i = ~ . the width of each uniform Segment

Since ~e are--concerned only with the real part of
the pulse, (10) becomes

N

v(t,L) ~ &n ~ V(Oi,Z=O) cos[oit-fI(oi)L]Awi (11)
+=1

Equation (11; is easily programmed on the computer
once V(Oi ,z=O), tbe Fourier transform of the pulse

being considered, is known.
In addition to using numerical integration to

evaluate (5), there are approx~mate methods which
can represent it in closed form. One such method
is the Taylor series expansion (also referred to
as quadratic approximation) where the phase con-
stant p(u) is approximated in the vicinity of ~. by

the first three terms of the Taylor series expan-
sion. For the cases being investigated, it is a
good assumption to consider the phase constant to
be a quadratic function of frequency. If the
pulses are sufficiently wide compared to the
modulating frequency, then only a small segment of
the p(o) curve is used and such an approximation is
quite valid.

It is possible to obtain closed form solu–
tions to (5) if the signal in the frequency domain
at z=O, V(W,Z=O), can be written in closed form.
Closed form expressions have been derived to eval-
uate (5) for Gaussian [I] and square modulated
pulses [2], [3] as they are dispersed while they
travel in a waveguide. These expressions were
modified for microstrips where the frequency
dependent p(u) of (6) was formed using Pramanick
and Bhartia’s model [12] for E

‘eff
(Q).

V. COMPUTATIONS

To verify and compare tbe different models
and methods, a number of measurements were made.
Only a representative sample of them will be pres-
ented here.

The variations of E (u) as a function of
‘eff

frequency for six different models are shown in
Figure 1. These are representative for a micro–
strip with a dielectric constant of Er=10.2, and

with a width of w=O.020” and a height of h=O.025”.
The distortion of a T=1O psec(3 dB width) DC

Gaussian pulse traveling a distance of L=O.354°
along this microstrip line: as predicted using
four of these models, is displayed in Figure 2.
For comparison, the undistorted pulse is also ex-
hibited in the figure. The position of the undis-
torted pulse has been determined assuming its ve-
locity of propagation ia based on the effective
dielectric constant of the microstrip at zero fre-
quency. The waveforms of the distorted pulses
were computed using numerical integration for the
evaluation of (5), as outlined in Section IV.
Based on the results of Figure 2 and 3, as well as
other computations and comparisons, it was decided
to use Pramanick and Bhartia’s model for E

‘eff(”)
for the continuation of the investigation of pulse
distortion due to dispersion.

The dispersion of a DC square pulse of width
T=250 psec traveling a distance of L=l” along a
microstrip with Er=10.2, w=O.025”, h=O.150” is

shown in Figure 3. It is apparent that major dis-
tortion peaks along the leading and trailing edges
of the pulse have been created. This distortion
pulse was also obtained using numerical integra-
tion.

To compare the validity of the Taylor series
approximation method, as outlined in Section IV,
computations were made for the envelope of dis-
torted Gaussian and square RF pulses using the
Taylor series expansion method. The results are
displayed, respectively, in Figures 4 and 5 where
they are compared with the computations of the
complete RF pulses obtained using numerical inte–
gration. It is evident from these and other com-
putations not included here that the Taylor series
expansion method yields good waveform approxima-
tions to the distorted RF pulses with a consider-
able reduction in computation time.

VI. CONCLUSIONS

The distortion of DC and RF pulses as they
propagate along a microstrip line was investigated
using dispersion models in conjunction with nume-
rical integration and Taylor series expansion ap-
proximation techniques. Pramanick and Bhartia’s
dispersion model provided a convenient closed form
expression to evaluate the distortion of a pulse
propagating along a microstrip line. Numerical
integration was required to analyze DC pulses. RF
pulses can be analyzed using either numerical
integration or the Taylor series expansion method,
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with only a slight decrease in accuracy but consi–
derable improvement in computational efficiency.
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Fig. 1. Effective dielectric constant of a microstrip line as a function of
frequency for different proposed models (Er= 10.2; w/h<l.0).
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Fig. 2. Gaussian DC pulse dispersion at a
distance L in a microstrip line using
different proposed models for f (c.))

‘eff
(cr= 10.2; w/h<l.0).
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Fig. 3. Square DC pulse dispersion at a distance
L in a microstrip line computed using
numerical integration and Pramanick and
Bhartia’s dispersion model.

Fig. 4 Gaussian RF pulse dispersion computed
using numerical integration for the full
modulated pulse and Taylor series expan-
sion for its envelope (carrier frequency
fo== 75 GHz).
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Fig. 5. Square RF pulse dispersion computed using
numerical integration for the full
modulated pulse and Taylor series expan–
sion for its envelope (carrier frequency
fo= 10 GHz).
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